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Abstract—Apache Spark, a powerful distributed computing
framework, has become a key to handling large-scale data pro-
cessing tasks in many applications, including signal processing.
However, there are different considerations for performance, cost,
or ease of use during the development and deployment stages.
This paper benchmarks Apache Spark on different local setups
in terms of performance and elaborates on alternative cloud
computing costs. Performances of different Spark master-slave
configurations with Docker and no Docker are evaluated over dif-
ferent numbers of worker nodes, cores, memory, and executors.
Spark WordCount benchmark is tested on Wikipedia datasets of
sizes ranging from 1GB to 25GB. The results reveal that in local
setups Docker creates additional parameter complexity as well as
performance overheads, therefore a “no Docker” setup is a better
choice. We also observe the dominance of I/O bottlenecks in local
setups. These results can help practitioners choose optimal setups
for different Development and Operations (DevOps) and big data
processing scenarios.

Index Terms—Apache Spark, Docker, WordCount, Executor,
RDD, HDFS, Cloud, Distributed System.

I. INTRODUCTION

In the dynamic landscape of distributed data processing
and intelligent systems, Apache Spark stands as a versatile
framework, which is widely known for its speed, scalabil-
ity, and user-friendly design [1]. Apache Spark addresses
the challenges posed by big data, characterized in terms of
volume, variety, velocity, and veracity (4Vs) [2]] for those
performing analytical tasks with the demand for efficient, fast,
and scalable solutions. It has become instrumental in parallel
data processing across computer clusters [3[], [4] for many
signal processing applications [5]], [6] and big data processing
tasks such as association rule mining (ARM) [7].

Intelligent systems, which leverage artificial intelligence to
process and analyze data, are increasingly being integrated
with sensors networks to monitor environments, detect anoma-
lies, and make data-driven decisions in real time [8]], [9]. These
sensor networks generate vast amounts of data continuously,
which poses significant challenges in terms of storage, process-
ing, and real-time analytics (ETL/ELT). Apache Spark, with
its in-memory computing capabilities and powerful distributed
processing framework, helps overcome these challenges. Spark
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Fig. 1: Apache Spark overview: Distributed applications com-
posed of tasks, are coordinated by the SparkContext object in
the driver program. SparkContext connects to cluster managers
which allocate resources across worker nodes and executors.

can process large volumes of streaming data from sensors
quickly and in parallel, facilitating real-time insights and ac-
tionable intelligence. Using Spark’s machine learning libraries,
intelligent systems can also perform advanced analytics and
predictive modeling on sensor data, enhancing their ability to
make accurate and timely decisions [[10]—[12].

This study aims to benchmark Apache Spark with PySpark
in a local environment with and without Docker. We are also
motivated by the increasing financial considerations associated
with available public cloud services. Although platforms such
as Amazon FElastic MapReduce (EMR) [13]] are suggested
for production setups, as they offer platforms as a service
(PaaS) for processing of large-scale workloads. However, if not
strictly-controlled, associated costs can pose a challenge for
non-production (development) scenarios. Increasing number
of nodes, virtual compute instances, memory and storage,
multiplied by execution time, contribute to fast growth in
operational expenses. Therefore, local cluster setups emerge as
an economical alternative, offering the flexibility to experiment
with emulated cluster configurations, model development, and



dataset preparation at a lower price. Furthermore, this approach
provides an opportunity to explore diverse parameters in a
controlled environment, enriching the understanding of Spark’s
behavior under varying load conditions.

II. BACKGROUND AND RELATED WORK

Apache Spark is a distributed data processing engine de-
signed for large-scale data analysis and machine learning [3]],
[14], [15]. It provides a high-level API in Python, Scala, Java,
and R, enabling developers to process and analyze massive
datasets. Spark’s architecture shown in Figure |1} allows it to
distribute data and computations across multiple machines,
significantly improving performance compared to traditional
single-machine processing. Spark applications run as indepen-
dent sets of processes coordinated by the SparkContext object
in the main (i.e. driver) program. SparkContext can connect
to several types of cluster manager, including the standalone
administrator, Apache YARN [16] or Apache Mesos [17].
These manage resources and scheduling across the nodes in
the cluster. This paper uses the standard standalone cluster
configuration.

A key feature that enables Spark is the Resilient Distributed
Dataset (RDD), which is a fault-tolerant and immutable core
data structure that represents distributed data collections across
the cluster. Spark optimizes RDD transformations (map, filter,
Jjoin, etc.) and actions (count, collect, etc.) by rearranging them
and choosing the most efficient physical execution plan [18]-
[20]. Spark also improves performance by utilizing in-memory
caching and minimizing data shuffling across the cluster.

Docker Containers are lightweight, standalone, executable
packages of software that include the code, runtime, system
tools, and libraries needed to run an application [21]]. Con-
tainers provide isolation and portability, enabling applications
to run across different environments without conflicts or
dependencies on the underlying system. Docker Compose is
a tool for defining and running multi-container applications,
enabling developers to launch complex applications easily. In
our system, Docker Compose is used for local cluster setups
as well as limiting resource allocations to instances.

The marriage of Apache Spark and Docker has caught the
attention of researchers exploring containerization benefits.
Previous research has looked at benchmarking Spark [4]], [18]],
[22] and containerized environment performance tests [23],
[24]. These studies have explored various aspects including
performance comparisons [25]], scalability assessments [26],
and resource utilization analysis [23]. Although these works
contribute valuable insights, our approach distinguishes itself
by focusing on localized experimentation using Docker, bring-
ing a practical perspective to configuration optimization. In
their study, Duarte, et al. [27]] compare Spark performance in
big data, focusing on batch and query processing tasks. Spark
demonstrates superiority in handling workloads with inter-
record dependencies, such as sorting and joining, leveraging
the distributed storage and resource management abstractions
provided by the Hadoop stack [28]|. Hriday, er al. [25] give
a comprehensive comparison of Apache Spark, comparing it
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Fig. 2: Overview of our experiment system. A standalone
Spark Docker cluster can be established with one master
and multiple worker nodes, which are all containers. Jupyter
notebook allows interactive scripting making it easy to debug
and track the jobs. HDFS is simulated through shared volumes
specified in the DockerFile.

against Hadoop MapReduce, Apache Flink, Apache Storm,
and Apache Samza. Although their work sheds light on the
relative strengths of these frameworks, our study differs by
emphasizing localized experimentation using Docker for prac-
tical insights into everyday usage. In exploring the impact of
memory size on big data processing, Han, et al. [26] compared
the performance of Hadoop and Spark clusters using the K-
means algorithm from the HiBench benchmark. Their findings
reveal that Spark exhibits superior performance when memory
size is adequate for the data, but Hadoop surpasses Spark as
data size increases due to performance degradation in Spark
when replacing disk data with memory-cached data beyond
the memory cache limit.

Although existing work offers valuable insights into Spark
benchmarking, dockerized environments, cost considerations,
and challenges, our study distinguishes itself by combining
these aspects in a unique context, local experimentation using
Docker and PySpark. Furthermore, our work sheds light on
custom setups in cloud or on premises as an alternative to
using PaaS solutions that may incur additional charges. The
following sections will detail specifics of our experimental
setups and results, highlighting contributions from this work.

III. METHODOLOGY

Our experimentation begins with the establishment of a
local Apache Spark cluster using Docker Compose. Figure
[Z] shows our system, which consists of a master node and
a configurable number of worker nodes. Containerization en-
sures the encapsulation of each Spark component, allowing for
easy deployment and scalability. This localized environment
aims to emulate real-world scenarios with the flexibility to dy-
namically adjust configurations. We specifically use PySpark
for seamless interaction with the Spark engine using Python.
Additionally, a container with JupyterLab offers an interactive
and user-friendly environment for script execution and result
visualization. For real-time insights and cluster health, exposed



TABLE I: Configuration details for setups 1-2-3.

Configuration | Executors | Cores | Memory (GB)
E1C4M4 1 4 4
E1C1M4 1 1 4
E1C2M2 1 2 2
E12CIM1 12 1 1
E6C2M2 6 2 2
E3C3M4 3 3 4

ports facilitate monitoring, and history server access enhances
visibility into job execution history. For performance evalua-
tion, we record the execution times for each task. We leverage
Spark’s built-in monitoring capabilities along with additional
logging to extract detailed insights.

Building on the Githulﬂ codebase, we explore a spectrum
of configurations to understand their impact on Spark’s per-
formance. The key parameters are the number of worker
nodes, executors, the number of cores per executor, and the
executor memory size. By varying these factors, we explore
the relationships between configuration settings and overall
system efficiency.

IV. EXPERIMENTS

Configuration: By using Docker vs. no Docker and modi-
fying the number of workers, we create three different setups
on top of which we vary the amount of executors to create
alternative configurations:

e Setup I: A local PySpark installation without Docker.

o Setup 2: A standalone cluster on Docker with 1 master
node and 1 worker node.

o Setup 3: A standalone cluster on Docker with 1 master
node and 3 worker nodes.

As shown in Table [l we create experimental configurations
by varying number of cores and memory associated with dif-
ferent number of executors. Configuration names are encoded
with initials and amount of resource counts. We obtain 6
different configurations for each setup. We examine the time
it takes to complete the given job.

Dataset: To measure the performance of our Spark setup,
we compile datasets of varying sizes from English Wikipedia
article Ranging from 1GB to 25GB, these datasets constitute
diverse data loads that can be stored in simulated HDFS [29]
shared volumes. The task at hand for benchmarking involves
executing the WordCount application on these datasets, al-
lowing us to measure execution times and resource utilization
across different configurations. The master and worker nodes
expose ports that are used as proxy to the master, driver
and history server that can be accessed from a web interface
allowing us to visually observe the cluster.

The experiments were run on Dell G15 Intel(R) Core(TM)
17-12700H with 14 cores (20 logical processors), SSD (Sam-
sung 1024GB NVMe), and 16 GB DRAM with Ubuntu 22.04

Thttps://github.com/mrn-aglic/spark-standalone-cluster
Zhttps://www.kaggle.com/datasets/yauangon/enwiki20201020-energy
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Fig. 3: Comparison of computation time with and without
Docker. This plot shows no Docker setup performs better and
indicates a small degradation for more workers.

as the host operating system. Docker 24.0.5-ubuntul, Docker-
compose 1.29 were used for containerization. All experiments
were run with SPARK-VERSION=3.5 and Python 3.10. By
limiting the cores and memory of the worker containers, we
controlled the capacity that each worker node can have.

V. RESULTS

Fig. [3] shows that the setup (1) with no Docker has lower
processing times compared to setups with Docker (2-3). The
performance difference increases ~2x as the size of the dataset
increases. We also observe that increasing worker counts from
1 to 3 increases processing time, causing ~ 10% slowdown.
This can be attributed to the additional communication over-
head among the 3 worker nodes and the master node.

Table shows the processing times (in seconds) on
Wikipedia datasets for different setups (no Docker vs.
Docker), configurations, and data set sizes. The tables
are sorted from left to right, generally in decreasing or-
der of performance (increasing times). Finally, a potential
SpeedUp=Max(time)/Min(time) value is given for different
configurations. As a starting reference in Setup 3, we see that
having more executors (E12C1M1) benefits from the paral-
lelism and available resources achieving better performance,
whereas lack of parallelism in executors (E1C1M4) leaves
the nodes under-utilized leading to the worst performance.
In setup 2, the same configuration (E1C1M4) is again the
worst performer. However, E12C1MI1 is not the best performer
in Setup 2, because there is only 1 worker and executors
can not benefit from parallelism. In setups 2-3 with Docker,
there are speed-ups ranging from ~2.40x to ~3.07x among
different configurations. In setup 1 (no Docker), we did not
observe a significant performance difference among differ-
ent configurations (SpeedUp~1x). Spark standalone resource
manager dynamically allocates all available resources to the
selected configurations for best utilization. Our performance



TABLE II: Spark WordCount benchmark execution times (in
seconds) for different setups and configurations.

Benchmark|EICIM4|E1C2M2(E1C4M4|E3C3M4(E12CIM1[{E6C2M2|SpeedUp
1-GB 41.2 41.5 41.5 43.9 46.9 46.3 1.14
2-GB 78.0 78.2 78.8 83.0 83.6 82.7 1.07
5-GB 1954  |189.3 |189.5  |200.3 198.1 201.0 |1.06
10-GB 362.5 |367.4 [367.1 |373.8 |376.8 387.4  |1.07
25-GB 799.0 |777.2 |775.3 |7196.4  |789.7 792.7 |1.03

(a) Setup1: Standalone No Docker

Benchmark|EIC2M2|E6C2M2(E1C4M4|E12CIM1|E3C3M4(E1C1M4|SpeedUp

1-GB 78.4 79.0 80.5 87.1 91.9 206.6 |2.64
2-GB 140.6  [142.7 |150.6 [151.4 170.1  |380.0 |2.70
5-GB 326.5 |321.3 (3354|3303 3873 |9855 [3.07
10-GB 625.3 6342 |652.0 [633.3 7732 |1893.7 |3.03
25-GB 1319.9 |1364.4 [1379.3 |1359.3 1758.4 |4007.2 |3.04

(b) Setup2: Standalone-Docker 1 Worker

Benchmark|E12CIM1[E1C2M2|E1C4M4|E6C2M2|E3C3M4|E1C1M4|SpeedUp
1-GB 89.8 83.0 85.6 85.7 94.7 199.5 |2.40
2-GB 151.4 153.8 154.5 163.4 [172.7 |380.2 |2.51
5-GB 339.5 3645 [353.6 |364.2 |414.6 |943.6 |2.78
10-GB 642.3 7106 6773 |713.6 |798.8 |1895.9 |2.95
25-GB 1340.1 1461.1 |1424.8 |[1452.0 |1718.9 |4053.8 |3.02

(c) Setup3: Standalone-Docker 3 Workers

may be limited by the I/O bandwidth since there is a linear
relationship between the dataset sizes and the processing times
(e.g. 1GB/41.2sec~25MB/sec). We also tested a subset of
our benchmarks with Gzip data compression. We could not
observe significant performance gains, which we attribute to
the additional CPU, memory, and I/O costs associated with the
compression and decompression operations (results omitted
here for brevity).

Localized setups also offer cost advantages. For example,
we conducted this research using 3 nodes and executed 50
hours/week for 1 month. If we were to run this cluster with
Elastic Compute Cloud (EC2) m7i.xlarge instances the prices
would be as follows;

Estimated cost = Time X ((EC2 instances X vCPU-hour EC2) 4+ vCPU-hour EMR)
= (50 x 4) x ((3 x $0.2016) -+ $0.0504)
= $131.04
With a monthly $131.04 cost, it starts to justify investing
in servers, i.e. chosing Capital Expense (CAPEX) over cloud
Operational Expenses (OPEX). Yet, if you need the elasticity
and scale, you can configure an Amazon EMR 30-node cluster
and run it for 1 hour or equivalently configure a 3-node cluster
and run it for 10 hours for the same price.

VI. CONCLUSION

This study offers a valuable resource for (big data pro-
cessing) practitioners looking to optimize Apache Spark de-
ployments in local clusters before migrating to a production
environment, emphasizing the importance of configurations
parameters for specific workloads. Docker results in containers
fighting for limited resources, causing overhead when run lo-
cally. These preliminary findings contribute to the understand-
ing of Spark’s behavior in emulated environments. Under-
standing these limitations is crucial for interpreting our results

and considering the broader implications for development and
operations.

While our work provides valuable insights into the com-
parison between dockerized and standalone Spark configura-
tions, there is a limitation of solely relying on the classical
WordCount benchmark. We focused on having an easy to
spin up infrastructure that can run various data processing
workloads and as such can easily be extended. We initiated
our experimentations with docker and then Vagrant, and we
continue to explore other relevant alternatives including recent
trends (Kubernetes Orchestration, Amazon EKS, serverless
Spark offerings). For a better representation of different Spark
workloads and enhance the generalizability of our findings, we
intend to extend our analysis to incorporate various bench-
marks including TPC-DS’| and new 4G-5G mobile telecom-
munication datasets. Additionally, while our experiments were
conducted on a single machine for controlled comparisons, in-
depth analysis on more varied or distributed environments may
give a deeper explanation on key points such as network and
I/O bottlenecks to supplement our findings.

In our future work, we plan to directly evaluate the perfor-
mance of these setups on a variety of tasks such as evaluating
the performance of different ARM methods with respect
to different configurations. Furthermore, we plan to explore
hybrid approaches that leverage both localized environments
for development and cloud services for production, striking a
balance between cost-effectiveness and scalability.
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