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Abstract—TIn this paper, we study and analyze the performance
of various loss functions on a recently proposed real-time instance
segmentation algorithm, YOLACT++. In particular, we study
the loss functions, including Huber Loss, Binary Cross Entropy
(BCE), Mean Square Error (MSE), Log-Cosh-Dice Loss, and
their various combinations within the YOLACT++ architecture.
We demonstrate that we can use different loss functions from
the default loss function (BCE) of YOLACT++ for improved
real-time segmentation results. In our experiments, we show
that a certain combination of two loss functions improves the
segmentation performance of YOLACT++ in terms of the mean
Average Precision (mAP) metric on Cigarettes dataset, when
compared to its original loss function.

Keywords—Instance segmentation, Loss function, YOLACT++,
real time segmentation.

I. INTRODUCTION

Real-time instance segmentation is an important field where
the goal is completing the instance segmentation task as in
[1]-[8] at real-time (or near real-time) speed. YOLACT++
[7], is a recent algorithm proposed for real-time instance seg-
mentation. When the goal is performing instance segmentation
at real-time, there are many computational constraints which
usually enforce researchers to use smaller architectures. As
such, the segmentation performance of real time algorithms
might be lower than offline (or non-real-time) algorithms in
terms of various segmentation based metrics. To avoid further
differences in the segmentation accuracy, it is important to
use the most suitable loss function. YOLACT++ uses mainly
binary cross entropy (BCE) loss function. However, for real
time segmentation, while being sufficient, that might not be
the best loss function. Therefore, in this study, we analyze the
effect of using different loss functions on the segmentation
performance of YOLACT++ algorithm.

We analyze the effect of training YOLACT++ at different
batch sizes first, and then use the best batch size for the
rest of the experiments in this paper. We combine various
loss functions and retrain YOLACT++ with each of those
combinations separately to better understand which loss func-
tion might better perform with YOLACT++. Our preliminary
experiments show that the combination of MSE and BCE
losses yields better segmentation performance when compared
to the segmentation performance of the original loss function.

The rest of this paper is organized as follows; in Section
II, we discuss related work including the YOLACT and
YOLACT++ architectures. Section III lists the loss functions

979-8-3503-0396-4/23/$31.00 ©2023 IEEE 264

that are used in our analysis. Section IV provides our experi-
mental details including the used datasets, performance metrics
and experimental results, respectively. We conclude the paper
with Section V.

II. RELATED WORK

Image segmentation has always been an important task
in computer vision and earlier segmentation studies mainly
focused on classical approaches such as [9]. However,
deep learning based techniques showed success over classical
approaches in many domains and they have taken the attention
of the researchers in many fields as in [10]-[12]. Similar to
those fields, recently proposed relevant segmentation studies
have mainly focused on developing deep learning based
approaches in the form of semantic or instance segmentation.
In 2020, the work in [13] summarized 14 well-known loss
functions used for image (semantic) segmentation in the
form of a survey. The authors of that work also introduced
a new loss function called “Log-Cosh-Dice loss” (LCDL).
In 2021, another similar work was conducted in [14] where
the authors focused on studying the performance of different
loss functions especially for medical image segmentation
applications. Additionally, they proposed a new loss function
“Log-Cosh-BCE-Dice” (LCBD) loss, which was inspired by
LCDL. In both works, they concluded that none of the loss
functions had the best performance, and that the performance
varied according to the task.

In 2020, another approach for instance segmentation
called CondInst was proposed in [1]. It adapts the weights
of the instance-aware fully convolutional networks (FCNs).
Following the success of CondInst, BoxInst [3], a single-stage
instance segmentation method, was also introduced along
with two new loss terms enabling high-quality instance
segmentation by using only box annotations. Next, we briefly
describe YOLACT and YOLACT++, as we study the effect
of loss functions on YOLACT based networks. YOLACT
[6]: It is one of the recent methods to achieve real-time
(> 30 fps) instance segmentation due to its parallelized and
lightweight structure. It performs two tasks: (1) generating a
set of global prototype masks over the entire image; and (2)
predicting the linear combination of coefficients per instance.
The coefficients are used to encode the representation of
each instance in the prototype mask space. After performing
non-max-suppression (NMS) to suppress duplicate detections,
the prediction is made by linearly combining the outputs of

TSP 2023

Authorized licensed use limited to: Ozyegin Universitesi. Downloaded on November 18,2024 at 11:06:57 UTC from IEEE Xplore. Restrictions apply.



Resnet FPN

|
P5
|
P4
|
P3
'
¢
1

c1

mask rescoring block

sssssssss

550X550 image

H 11 [

H | 1

H | !

: ‘ .‘

— | I

' i

| . - ! .
i ]

X ’ ) Prototypes

Fig. 1. This figure shows the architecture of the YOLACT++ al-
gorithm. The green layers represent 3x3 deformable convolutional
layers in the backbone. In the figure, c is for classes, a for anchors
for feature layer P4, k for prototypes, and WxH for input dimensions
of the image. This figure is a re-illustration of the original architecture
from [7].

the two subtasks, where a simple matrix multiplication is
applied and followed by a cropping operation. For improved
accuracy during the evaluation, final masks are cropped with
the predicted bounding boxes; during the training, they are
cropped with the ground truth boxes. Cropping works fine
when the bounding box is accurate, otherwise “leakage”,
noise from outside of the cropped region, can show up in
the predicted instance mask. They also applied semantic
segmentation loss during training to increase feature richness.
Their experiments showed that YOLACT outperformed in
generating better masks with its speed in inference which
makes it a better candidate for autonomous vehicles, object
detection, face segmentation.

YOLACT++ [7]: Following YOLACT, the same
authors proposed YOLACT++ [7] by introducing several
improvements to the existing architecture. A fast mask
re-scoring branch is added after the cropping operation. It
contains a 6-layer FCN where each convolution layer uses
a ReLU activation with a global pooling layer. It predicts
the mask IoU for each object type (category) which is then
used to re-score each segmentation mask by computing the
product between the inferred (predicted) mask IoU and the
corresponding classification confidence. Another novelty they
introduced was using deformable convolution layers in the
YOLACT backbone, which resulted in performance gain.
For better detection results, they optimized the prediction
head by choosing the hyper-parameters for the anchor
including aspect ratios and scales. Overall, YOLACT++
showed a considerable boost compared to YOLACT while
still performing in real-time. YOLACT++ architecture is
shown in Figure 1.

I11. LOSS FUNCTIONS

Next, we summarize the used loss functions in our analysis.
Binary Cross Entropy (BCE): Cross-entropy [15] is used
to compute the difference between two probability distribu-
tions. In YOLACT++, pixel-wise binary cross entropy between
predicted masks and ground truths is computed and used as
the mask loss. The BCE is a loss function that penalizes

the predicted probabilities based on their deviations from the
expected value, and it is calculated as the negative average of
the logarithms. The formula for a single instance is:

BCOE = —(ylogg) — (1 = y)log(1 - 9) (1)

where y is the ground-truth, ¢ is the predicted value.

Mean Squared Error (MSE): It computes the mean squared
error between the ground truth and its predicted value over all
the samples. MSE considers outliers by putting a large weight
on the outlier errors via its quadratic nature and is defined as:

1 .

MSE = & ;(y ) @)
where [V is the total sample-number.
Huber Loss [16]: It can be seen as a combination of MSE
and mean absolute error (MAE). MAE takes the average of
absolute (non-negative) differences between the model’s pre-
dictions and the ground truth. In setups where we need to focus
on outliers, MAE alone becomes less effective because both
small and large errors roughly get similar weights. Huber loss
effectively undergoes both small and large errors by combining
MSE and MAE. Based on whether the absolute difference
is greater than a given threshold (d), Huber loss routes the
loss calculations as being quadratic or linear, accordingly. It
is defined as follows:
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where (a =y — f(x)), f(x) is the predicted value and ¢ is a
threshold.

Log-Cosh-Dice Loss [13]: Dice loss (DL) [17] is calculated
based on dice coefficient (DC), which measures a form of simi-
larity between two sets, and is commonly used for addressing
the data imbalance problem. The authors of [13] proposed
log-cosh-dice loss (LC'DL) to tackle the non-convex nature
of the dice coefficient. They utilized cosh(x), since hyperbolic
functions are easily differentiable. However, cosh(x) can go
to infinity, and to keep that in a range log space is used.
They managed to get a loss function whose derivative is
continuous and finite, while encapsulating the properties of
the dice coefficient. LC'DL is defined as follows:

25 pigi
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LCDL = log(cosh(DL)) 5)

where DL =1 — DC, p;, and g; represent the prediction and
ground-truth, respectively, at the i*" pixel.

IV. EXPERIMENTS

Next, we present our experimental results. Our experiments
were conducted to first compute an appropriate batch size
for training, then to figure out the effect of individual loss
functions on the segmentation performance of YOLACT++,
and then the weighted combinations of loss functions in the
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Fig. 2. This plot shows how the loss (y-axis) changes for various loss
functions as the number of iterations (x-axis) increases during the training.

form of: aLoss; + fLosse where v and [ are the weights of
the chosen loss functions: Loss; and Losss, respectively. We
conducted our experiments on 2 x NVIDIA RTX A6000 with
CUDA version 12.0. In our preliminary experiments, we first
trained YOLACT and YOLACT++ algorithms on MSCOCO
[18] without making changes to the original code. Our goal
was to see if we would be able to reproduce their reported
results and we observed that we could reproduce the reported
results on the COCO dataset. After that, we trained the model
on Cigarettes dataset provided by Adam Kelly' (accessed on
March 2023). The Cigarettes dataset is annotated for object
detection and segmentation according to the COCO format.
The dataset consists of 2200 images of cigarettes dropped on
the ground, where 2000 images are included in the training
set, and 200 images in the validation set. We used a maximum
image size of 512 pixels.

In all of our experiments, we adopted ResNet101-FPN
with deformable convolutions as the backbone, and utilized
stochastic gradient descent as the optimization algorithm. We
set the learning rate of YOLACT++ to le~*. The following
performance metrics were used in our experiments:

(i) Intersection over Union (IOQU): It measures the overlap
between the target (ground truth) mask A and the predicted

mask B as follows: IOU = }iﬂg and (ii) mAP (Mean

Average Precision): All the AP values are averaged over dif-
ferent classes/categories. mAP = % Zfil %, where
TP is true positives and F'P is false positives.

In our experiments, we first performed tests to figure out
the best batch size. Once obtained, we used the same batch
size in all of our other experiments. As a batch size, the values
of 2, 8 and 16 are used individually on the Cigarettes dataset.
In this experiment, we did not change other parameters
of the original YOLACT++, except the batch size. Table
I summarizes the results of those experiments, where D
indicates “detection”, and M indicates “mask”. In the table,
we show results for both detection and segmentation (Mask)
tasks by using four different metrics: mAP, APsy, APy
and APys5. The best values, in the table, are shown in bold.

Uhttps://www.immersivelimit.com/datasets/cigarette-butts

Fig. 3. Sample results are shown on two images from the Cigarettes dataset
in the form of confidence scores, segmentation masks (overlayed over each
instance) and bounding boxes (around each instance).

In this table, our main metric was mAP and according to
mAP value, best batch size values were as follows: for the
detection task it was 8, and for the segmentation task, it was
16.

Next, we studied the performance of the individual loss
functions. We studied how each loss function changes the
results on YOLACT++ individually. In those experiments,
we kept the batch size to 16. Table II shows the results of
our experiments where we replaced the original mask loss
function: the binary cross-entropy with each of the other loss
functions as listed in the table. In the table, the best values
are shown in bold. For the sake of simplicity, we use the
following acronyms: BCE for binary cross-entropy, HL for
Huber loss, LCDL for Log-Cosh-Dice loss, and MSE for
mean squared error. As the results demonstrate, the results
of using other loss functions individually did not introduce
any improvements. Huber Loss with 1 as a delta value
yielded the 80.53% mAP which was the highest mAP value
that we obtained in this experiment. As shown in the table,
experimentation with different delta values resulted in worse
mask mAPs when values are increased.

Figure 2 plots how the loss value changes over iteration
numbers for multiple loss functions including BCE, MSE,
Huber loss, Log-Cosh-Dice loss, MSE + Huber loss, MSE +
BCE and BCE + Huber loss. As seen from Table II and Figure
2, the use of Log-Cosh-Dice loss resulted in insufficient
mAP value, the main reason for that, the algorithm with that
loss function stucks at local optimum value. As a result, the
model couldn’t learn properly. Other loss functions yielded
better performance compared to Log-Cosh-Dice loss.

Given the suboptimal results in mAP obtained from
replacing the original mask loss function with several options,
we decided to study the effect of using combinations of two
loss functions. The results are summarized in Table III. We
obtained a higher value in segmentation in terms of the mAP
value with the combination of aMSE + SBCE, where «, and
B were set to 0.5 and 1, respectively. Overall, we observed
that the hybrid losses showed better performance than the
single loss functions.
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TABLE 1. TRAINING RESULTS OF YOLACT++ WITH DIFFERENT

BATCH S1ZES ON THE CIGARETTES DATASET

Batchsize Det / Seg mAP APso APrs APys5
2 Detection 75.91 98.84 96.59 0.28
2 Segmentation | 82.19 98.63 97.53 1.18
8 Detection 79.91 99.99 98.99 0.22
8 Segmentation | 83.65 99.99 98.01 1.82
16 Detection 77.27 98.94 97.91 0.10
16 Segmentation | 84.67 98.95 98.95 2.23
TABLE II. TRAINING RESULTS OF YOLACT++ BY USING
DIFFERENT INDIVIDUAL LOSS FUNCTIONS
Losses mAP AP50 AP55 AP65 AP75 AP95
BCE 83.65 99.99 99.99 99.99 98.01 1.82
HL(5:1) 80.53 99.96 99.96 98.97 97.00 1.05
HL(5:2) 79.03 99.90 98.89 98.89 97.38 0.00
HL(5:3) 76.74 98.82 98.82 98.78 96.75 0.00
LCDL 71.56 98.96 98.96 98.94 95.86 0.00
MSE 79.21 98.95 98.95 97.96 96.94 0.02
TABLE III. SEGMENTATION RESULTS OF HYBRID LOSS FUNCTIONS
WITH DIFFERENT WEIGHTS ON YOLACT++
Hybrid Losses a | B | mAP APsg APegs AP75 | APys
HL + BCE 1 1 81.36 99.00 99.00 97.00 0.33
HL + MSE 1 1 78.39 99.85 98.87 97.80 0.00
MSE + BCE 1 1 80.54 99.78 99.78 98.79 0.05
MSE + BCE 2 |1 80.53 99.50 98.52 98.52 0.13
MSE + BCE 3 1 79.01 99.02 98.07 96.95 0.00
MSE + HL 2 |1 75.44 99.02 97.13 95.19 0.00
MSE + HL 3 1 78.00 98.99 98.00 95.97 0.00
HL + BCE 2 11 82.37 99.96 98.71 96.28 0.82
HL + BCE 3 1 83.24 98.91 98.91 98.89 0.38
MSE + BCE 0.5 1 84.43 99.98 99.98 | 98.98 2.08
MSE + HL 0.5 1 71.37 93.93 92.71 89.55 0.00
HL + BCE 0.5 1 82.35 99.86 99.86 98.89 0.05

V. CONCLUSION

Real time instance segmentation is an important task in
computer vision. In this paper, we tackled the problem of im-
proving the performance of the recently proposed YOLACT++
algorithm for better segmentation performance without chang-
ing its architecture. We used various loss functions, as used in
medical imaging, and studied their segmentation performance
in our base model: YOLACT++. In particular, we studied
the performance of MSE, BCE, Huber and Log-Cosh-Dice
loss functions. We analyzed how they affect the segmentation
performance individually and as a combination. We observed
that hybrid (combination) loss functions yield better perfor-
mance when compared to using individual losses. As a result,
in this paper, we demonstrate that the performance of a real
time instance segmentation algorithm can be improved without
changing its architecture. In particular, we observed that by
using the combination of MSE and BCE losses, we could
get better segmentation results (see our results in Table III).
Future work might include studying more combinations of loss
functions and deriving new loss functions for segmentation.
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