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VisIRNet: Deep Image Alignment for UAV-Taken
Visible and Infrared Image Pairs
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Abstract— This article proposes a deep-learning-based solution
for multimodal image alignment regarding unmanned aerial
vehicle (UAV)-taken images. Many recently proposed state-of-the-
art alignment techniques rely on using Lucas–Kanade (LK)-based
solutions for a successful alignment. However, we show that
we can achieve state-of-the-art results without using LK-based
methods. Our approach carefully utilizes a two-branch-based
convolutional neural network (CNN) based on feature embedding
blocks. We propose two variants of our approach, where in the
first variant (Model A), we directly predict the new coordinates of
only the four corners of the image to be aligned; and in the second
one (Model B), we predict the homography matrix directly.
Applying alignment on the image corners forces the algorithm
to match only those four corners as opposed to computing and
matching many (key) points, since the latter may cause many
outliers, yielding less accurate alignment. We test our proposed
approach on four aerial datasets and obtain state-of-the-art
results when compared to the existing recent deep LK-based
architectures.

Index Terms— Corner-matching, deep learning, image align-
ment, infrared image registration, Lukas–Kanade (LK) algo-
rithms, multimodal image registration, unmanned aerial vehicle
(UAV) image processing.

I. INTRODUCTION

RECENT advancements in unmanned aerial vehicle
(UAV) technologies, computing, and sensor technolo-

gies, allowed the use of UAVs for various earth observation
applications. Many UAV systems are equipped with multiple
cameras today, as cameras provide reasonable and relatively
reliable information about the surrounding scene in the form
of multiple images or image pairs. Such image pairs can be
taken by different cameras, at different viewpoints, different
modalities, or at different resolutions. In such situations,
the same objects or the same features might appear at dif-
ferent coordinates on each image and, therefore, an image
alignment (registration) step is needed before applying many
other image-based computer vision applications such as image
fusion, object detection, segmentation or object tracking as in
[43], [44], and [45].

The infrared spectrum and visible spectrum may reflect
different properties of the same scene. Consequently, images
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Fig. 1. Overview of the image alignment process is shown. On the left,
input RGB, IRGB (192 × 192 pixels) and IR, IIR (128 × 128 pixels) images
are shown. The IIR is shown in pseudocolors. Both images are given as input
to the registration stage where the transformation parameters represented by
the homography matrix (H ) are predicted. After the registration process, the
IIR is transformed (warped) onto the IRGB space by locating the positions of
c1, c2, c3, and c4 as c′1, c′2, c′3, and c′4. The warped IIR is overlayed (where
α = 0.4) on the IRGB.

taken in those modalities, typically, differ from each other. On
many digital cameras, the visible spectrum is captured and
stored in the form of a red-green-blue (RGB) image model
and a typical visible spectrum camera captures visible light
ranging from approximately 400 to 700 nm in wavelength [6],
[35]. Infrared cameras, on the other hand, capture wavelengths
longer than those of visible light, falling between 700 and
10 000 nm [9]. Infrared images can be further categorized
into different wavelength ranges as near-infrared (NIR), mid-
infrared (MIR), and far-infrared (FIR) capturing different types
of information in the spectrum [9], [10], [15], [16].

Image alignment is, essentially, the process of mapping the
pixel coordinates from different coordinate system(s) into one
common coordinate system. This problem is studied under
different names including image registration and image align-
ment. We will also use the terms alignment and registration
interchangeably in this article. Typically, alignment is done
in the form of image pairs mapping from one image (source)
onto the other one (target) [18]. Image alignment is a common
problem that exists in many image-based applications where
both the target and source images can be acquired by sensors
using the same modality or using different modalities. There is
a wide range of applications of image alignment in many fields
including medical imaging [1], [21], UAV applications [22],
[36], image stitching [8] and remote-sensing applications [5],
[5], [29], [30], [37].
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Image alignment, in many cases, can be reduced to the
problem of estimating the parameters of the perspective
transformation between two images acquired by two separate
cameras, where we assume that the cameras are located on the
same UAV system. Fig. 1 summarizes such an image align-
ment process where the input consists of a higher resolution
RGB image (e.g., 192 × 192 pixels) and a lower-resolution
IR image (e.g., 128 × 128 pixels visualized in pseudocolors
in the figure). The output of the registration algorithm is the
registered (aligned) IR image on the RGB image’s coordi-
nate system. As perspective transformation [20] is typically
enough for UAV setups containing nearby onboard cameras,
our registration process uses a registration function based on
the Homography (H) matrix. H contains eight unknown (pro-
jection) parameters and the goal of the registration process
is to predict those eight unknown parameters, directly or
indirectly.

In the relevant literature, registering RGB and IR image
pairs is done by using both classical techniques (such as
scale-invariant feature transform (SIFT) [33] along with the
random sample consensus (RANSAC) [14] algorithm as in [3])
and by using more recent deep-learning-based techniques as in
[7], [34], [52]. Classical techniques include feature-based [40],
[50] and intensity-based [39] methods. Feature-based [40],
[50] methods essentially find correspondences between the
detected salient features from images [47]. Salient features are
computed by using approaches such as SIFT [32], speeded-up
robust features (SURF) [4], Harris Corner [19], and Shi-
Tomas corner detectors [24] in each image. The features from
both images are then matched to find the correspondences
as in [41], [42], and [46], and to compute the transforma-
tion parameters in the form of a homography matrix. The
RANSAC [46] algorithm is commonly used to compute the
homography matrix that minimizes the total number of outliers
in the literature. Intensity-based [39] methods compare inten-
sity patterns in images via similarity metrics. By estimating
the movement of each pixel, optical flow is computed and
used to represent the overall motion parameters. In [2] and
[13] uses Lucas–Kanade (LK)-based algorithms that take the
initial parameters and iteratively estimate a small change in
the parameters to minimize the error. A typical intensity-based
registration technique essentially uses a form of similarity as
its metric or as its registration criteria including mean squared
error (MSE) [17], cross correlation [28], structural similarity
index (SSIM), and a peak signal-to-noise ratio (PSNR) [51].
Such metrics are not sufficient when the source image and
target image are acquired by different modalities. This can
yield poor performance when such intensity-based methods
are used.

Overall, such major classical approaches, typically, are
based on finding and matching similar salient keypoints in
image pairs, and therefore, they can yield unsatisfactory results
in various multimodal registration applications.

Relevant deep alignment approaches use a form of keypoint
matching, template matching, or LK-based approaches as
in [7] and [27]. Those techniques typically consider multi-
ple points or important regions in images to compute the
homography matrix H which contains the transformation

parameters. However, having the information of four matching
points represented by their corresponding 2-D coordinates
(xi , yi ), where i = 1, 2, 3, 4 is sufficient to estimate H.
Therefore, if found accurately, four matching image-corner
points between the IR and RGB images would be enough to
perform accurate registration between the IR and RGB images.
While many techniques based on keypoint extraction can be
employed to find matching keypoints between the images,
we argue that the corner points on the borders of one image can
also be considered as keypoints, and by using those corners of
the image, we do not need to utilize any keypoint extraction
step.

In this article, we propose a novel deep approach for reg-
istering IR and RGB image pairs, where instead of predicting
the homography matrix directly, we predict the location of the
four corner points of the entire image directly. This approach
removes the additional iterative steps introduced by LK-based
algorithms and eliminates the steps of computing and finding
important keypoints. Our main contributions can be listed as
follows.

1) We introduce a novel deep approach for alignment
problems of IR images onto RGB images taken by
UAVs, where the resolutions of the input images differ
from each other.

2) We introduce a novel two-branch-based deep solution
for registration without relying on the Lukas–Kanade-
based iterative methods.

3) Instead of predicting the homography matrix directly,
we predict the corresponding coordinates of the four
corner points of the smaller image on the larger image.

4) We study and report the performance of our approach on
multiple aerial datasets and present the state-of-the-art
results.

II. RELATED WORK

Many recent techniques performing image alignment rely on
deep learning. Convolutional neural networks (CNNs) form
a pipeline of convolutional layers where filters learn unique
features at distinct levels of the network. For example, DeTone
et al. [12] proposed a deep image homography estimation
network (DHN) that uses CNNs to learn meaningful features
in both images and it directly predicts the eight affine trans-
formation parameters of the homography matrix. Later, Le
et al. [26] proposed using a series of networks to regress the
homograph parameters in their approach. The latter networks
in their proposed architecture aim to gradually improve the
performance of the earlier networks. Their method builds on
top of DHN [12]. Another work in [7] proposed incorporating
the LK algorithm in the deep-learning pipeline.

Zhao et al. [52] used a CNN-based network and introduced
a learning-based LK block. In their work, they designed
modality-specific pipelines for both source and template
images, respectively. At the end of each block, there is a
unique feature construction function. Instead of using direct
output feature maps, they constructed features based on Eigen
values and Eigen vectors of the output feature maps. The
features constructed from the source and template network
channels have a similar learned representation. Transformation
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Fig. 2. Architectures of various recently proposed deep alignment algorithms
including DHN [12], MHN [26], CLKN [7], and DLKFM [52]. While DHN
and MHN predict the homography parameters H; CLKN and DLKFM rely
on using LK-based iterative approach and they use feature maps at different
resolutions. By doing so, they predict homography in steps Hi where each
step aims to correct the previous prediction.

parameters found at a lower scale are given as input to the next
level and the LK algorithm iterates until a certain threshold is
reached. In another work, Deng et al. [11] utilized disentangled
convolutional sparse coding to separate domain-specific and
shared features of multimodal images for improved accuracy
of registration. Multiscale generative adversarial networks
(GANs) are also used to estimate homography parameters as
in [34].

The architectural comparisons of the above-mentioned mul-
tiple networks are provided in Fig. 2. In DHN [12], the image
to be transformed (it is noted as IIR in the figure) is padded to
have the same dimensions as the target image (IRGB) and they
are concatenated channel-wise. The concatenated images are
given to the deep homography network (DHN) for the direct
regression of the eight values of the homography matrix. On
the other hand, multiscale homography estimation (MHN) [26]
adapts using a series of networks (Neti ). The inputs for
Net2 are a concatenation of IIR and IRGB. For the succeeding
levels, first, the warping function performs the projective
inverse warping operation on the infrared image (IIR) via
the homography matrix which was predicted at the previous
level. The resulting image (I′IRi

) is first concatenated with
IRGB and then given as input to the Neti . For the following
levels, the current matrix and previously predicted matrices
are multiplied to form the final prediction. This way MHN
aims to learn to correct mistakes made in the earlier levels.
Cascaded LK network (CLKN) [7] uses separate networks
for each modality. They use levels of different scales in the
form of feature pyramid networks and perform registration
from the smallest to the largest. The homography matrix
from the earlier LK-layer is given as input to the next. Deep
LK feature maps (DLKFM) [52] also perform coarse to fine
registration as shown in Fig. 2. It uses a special feature

construction block called (fcb). The (fcb) block takes in the
feature maps and transforms them into new features based
on the Eigen vectors and covariance matrix. The constructed
features capture principal information and the registration is
performed on the constructed feature maps, thus, it aims to
increase the accuracy of the LK-layer. Our approach uses
separate feature embedding blocks to process each modality
separately. It is trained to extract modality-specific features so
that the output feature maps of different modalities can have
similar feature representations.

III. PROPOSED APPROACH: VISIRNET

In our proposed approach, we aim at performing accurate,
single, and multimodal image registration which is free of
the iterative nature of LK-based algorithms. We name our
network VisIRNet, where we aim to predict the location of
the corners of the input image on the target image directly
since having four matching points is sufficient to compute
the homography parameters. In our proposed architecture,
we assume that there are two input images with different
resolutions. The overview of our architecture is given in
Fig. 3. Our approach first processes two inputs separately
by passing them through their respective feature embedding
blocks and extracts representative features. Those features are
then combined and given to the regression block as input. The
goal of the regression block is to compute the transformation
parameters accurately. The output of the regression block is
eight-dimensional (which can represent the total number of
homography parameters or the coordinates of the four corner
points of the source image on the target image).

A. Preliminaries

1) Perspective Transformation: Here, by perspective trans-
formation, we mean a linear transformation in the homogenous
coordinate system which, in some sense, warps the source
image onto the target image. The homography matrix consists
of the transformation parameters needed for the perspective
transformation. The elements of the 3 × 3 dimensional
homography matrix represent the amount of rotation, trans-
lation, scaling, and skewing motions. Homography matrix H
is defined as follows:

H =

p1 p2 p3
p4 p5 p6
p7 p8 1

 (1)

where the last element (p9) is set to 1 to ensure the validity
of conversion from homogeneous to the Cartesian coordinates.
Warping function maps a set of coordinates [(xi , yi ), . . . , ]

to another coordinate system via H. Let ci = (xi , yi ) be the
location of a point in the coordinates set C of the source
image. Let W (c, P) be the warping function that warps given
coordinate c with parameter set P of H to the target image

c′i = W (ci , P). (2)

The warping process is a linear transformation in a homoge-
neous coordinate system. Therefore, the Cartesian coordinates
are first transformed into the homogeneous coordinate system
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Fig. 3. Overview of our proposed network architecture. Two parallel branches including the RGB branch and IR branch (feature embedding blocks) extract
the salient features for RGB and IR images, respectively. Those features are, then channel-wise concatenated and fed into the regression block for direct
(Model B) or indirect (Model A) homography prediction, that is, the model can be trained for learning the homography matrix in Model B or to regress the
corresponding coordinates of the four corners of the input IR image on the RGB image in Model A. The output is an eight-dimensional vector (for H) if
Model B is used; and it is an eight-dimensional vector where those eight values correspond to the (x, y) coordinates of the four corners of the IR image,
if Model A is used. The details of the feature embedding block are given in the top corner of the figure (also see Table I). The details of the regression block
are given in the lower right corner of the figure (also see Table II).

by adding the extra z dimension to the 2-D Cartesian pixel
coordinates. Let ci be the pixel with xi , yi coordinates. Homo-
geneous coordinate of ci can be represented by setting z−axis
to 1, that is, chi = (xi , yi , 1). Once we have the homography
matrix, we warp any given i th pixel location ci represented
by (xi , yi ) to its warped version cwarped

i on the other image’s
Cartesian coordinate as follows:

cwarped
hi

= W (ci , P)⇐⇒

x ′i
y′i
z′i

 =
p1 p2 p3

p4 p5 p6
p7 p8 1

xi

yi

1

 (3)

where x ′i , y′i , z′i , are warped homogeneous coordinates of
cwarped

i which can be converted to Cartesian coordinates by
simply division by the z′i value. Therefore, we can obtain the
final warped 2-D pixel coordinates in Cartesian coordinates as
follows: c′i = (x ′i , y′i ), where

xwarped
i =

x ′i
z′i
⇐⇒

p1xi + p2 yi + p3

p7xi + p8 yi + 1
(4)

ywarped
i =

y′i
z′i
⇐⇒

p4xi + p5 yi + p6

p7xi + p8 yi + 1
. (5)

B. Network Structure

Our proposed network is composed of multimodal feature
embedding blocks (MMFEB) and a regression block (see
Fig. 3). The regression block is responsible for predicting the
eight homography matrix parameters directly or indirectly. In
this article, we study the performance of two variants of our
proposed model and we call them Model A and Model B.
Model A predicts the coordinates of the corner points while its
variant, Model B, predicts the direct homography parameters.
In Model A, four corners are enough to find the homography

matrix. Therefore, the last layer has eight neurons for the four
(x, y) corner components for Model A, or the eight unknown
homography parameters for Model B.

1) Multimodal Feature Embedding Backbone: MMFEB is
responsible for producing a combined representative feature
set formed of fine-level features for both of the input images.
The network then will use that combined representative feature
set to transform the source image onto the target image. We
adapt the idea of giving RGB and infrared modalities separate
branches as in [52]. We use two identical networks (branches)
with the same structure but with different parameters for RGB
and infrared images, respectively. Therefore, the multimodal
feature embedding block has two parallel branches with iden-
tical architectures (however, they do not share parameters),
namely the RGB branch and the infrared branch. We first
train the multimodal feature embedding backbone by using
average similarity loss Lsim (see 6). To compute the similarity
loss, we first generate a 128 × 128 rectilinear grid, represent-
ing locations in the infrared coordinate system as in spatial
transformers [23]. Then, we use the ground-truth homography
matrix to warp the grid onto the RGB coordinate system
resulting in a warped curvilinear grid representing projected
locations. We use bilinear interpolation [25], [38] to sample
those warped locations on the RGB feature maps ( fRGB). After
that, we can compute the similarity loss between IR feature
maps and resampled RGB feature maps. Algorithm 1 provides
the algorithmic details of calculating the similarity loss for the
feature embedding block.

MMFEB is trained by using the Lsim (see 6) which is
detailed in Algorithm 3. Steps for training the MMFEB are
given in Algorithm 1. The regression block is trained with
homography loss (LH

2 ) in combination with average corner
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TABLE I
LAYER-BY-LAYER DETAILS OF THE FEATURE EMBEDDING BLOCK. THERE

ARE ALSO SKIP CONNECTIONS BETWEEN THE LAYERS IN THIS
ARCHITECTURE AS SHOWN IN FIG. 3

error (LAce) (see the “average corner error (ACE)” section for
the definitions of LAce), yielding the total loss L to train our
model. Table I summarizes the structure of our used MMFEB.

2) Regression Block: The second main stage of our pipeline
is the regression block which is responsible for making the
final prediction. The prediction can be the four corner locations
if Model A; or the unknown parameters of the homography
matrix if Model B. fRGB and fIR are the feature maps extracted
by passing the RGB image and infrared image through their
respective feature embedding blocks in the feature embedding
block. Note that fRGB and fIR have different dimensions.
Therefore, we apply zero-padding to the lower dimensional
feature maps ( fIR) so that we can bring its dimensions to
the dimensions of fRGB, resulting fIRpadded. We concatenate
(channel-wise) fIRpadded to fRGB feature maps coming from
infrared and RGB feature embedding blocks and use that as
input for the regression block.

The architecture for the regression block is further divided
into two subparts as shown in Fig. 3. The first part is composed
of six levels. Apart from the last level, each level is composed
of two sublevels followed by a max-pooling layer. Sublevel is
a convolution layer followed by a batch normalization layer
followed by a relu activation function. Sublevels m and n
of a level l are identical in terms of the filters used, kernel
size, stride, and padding used for level l. The sixth level
does not have a max-pooling layer. The second part has two
1024-dense layers with relu as an activation function followed
by a dropout layer and an eight-dense output layer for eight
parameters of the homography matrix or corner components.
Feature maps from the previous part are flattened and given
to the second part where homography matrix parameters or
corner components are predicted according to the model used.
Table II gives detailed information for the first and the second
parts of the regression head.

C. Loss

While MMFEB uses similarity loss, we used two loss terms
based on the corner error and homography for the regression
head.

1) Similarity Loss: The similarity loss is used to train
MMFEB and is defined as follows:

Lsim =
1

x ∗ y

n∑
x=0

n∑
y=0

(
f ′RGB(x, y)− fIR(x, y)

)2 (6)

Algorithm 1 Training Steps of the MMFEB
Inputs: I ∗RGB, I ∗I R ▷ * indicates whole training set
for e← 0 to epochs do

for batch ← 0 to dataset Si ze/batchsi ze do
IRGB = I ∗RGB[batch]
IIR = I ∗IR[batch]
H ← groundT ruth Homography
fIR ← RG Bbranch(IRGB)

fRGB ← I Rbranch(IIR)

simLoss ← Lsim( fIR, fRGB, H)

Backprop(simLoss) Using AdamOptimizer
end for

end for

TABLE II
LAYER-BY-LAYER DETAILS OF THE REGRESSION BLOCK
AS SHOWN IN FIGURE 3. LEVELS INDICATED BY L ARE

GROUPS OF CONV2D + BATCHNORMALIZATION + RELU.
THE CONV2D LAYERS IN EACH LEVEL HAVE THE SAME

CHARACTERISTICS AND FILTER DIMENSIONS. THE
NUMBER OF USED FILTERS INCREASES AS WE

GET DEEPER IN THE ARCHITECTURE

Algorithm 2 Training Step of the Regression Block
let M be RegressionBlock
Inputs: I ∗RGB, I ∗IR ▷ * indicates whole training set
for e← 0 to epochs do

for batch ← 0 to dataset Si ze/batchsi ze do
IRGB = I ∗RGB[batch]
IIR = I ∗IR[batch]
H ← groundT ruth Homography
fIR ← RG Bbranch(IRGB)

fRGB ← I Rbranch(IIR)

Ensure: fRGB.shape = 192× 192× 64
Ensure: fIR.shape = 128× 128× 64

f I Rpadded = zeroPadd( fIR)

fRGB_IR = concat ( fRGB, f I Rpadded )

Ĥ =M( fRGB_IR)

Loss = L(Ĥ , H)

Backprop(Loss) using AdamOptimizer
end for

end for

where fIR/RGB(x, y) is the value at (x, y) location for respec-
tive image feature maps. f ′RGB(x, y) is the value at (x, y)

location on the resampled RGB feature maps. Note that the
(x, y) is a location on the coordinate system constrained by
the infrared image height and width. The algorithmic details
of the similarity loss are provided in Algorithm 3.

2) L2 Homography Loss Term: Model B is trained to
predict the values of the elements of the homography matrix.
Therefore, its output is the eight elements of a 3 × 3 matrix
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Algorithm 3 Computing the Lsim loss
fRGB ← RG Bbranch(IRGB)

fIR ← I Rbranch(IIR)

H ← groundT ruth Homography
gridn×n ← 2x2gridwi th Irdimensions

Ensure: war pedGrid = war pGrid(gridn×n, H−1)

f
′

RGB = Bilinear Sampler( fRGB, war pedGrid)

Lsim ← 0
for i = 0, i ≤ n × n do

I ri = fIR[i]
Rgbi = f

′

RGB[i]
Pdi f f ← I ri − Rgbi
Lsim ← Lsim + P2

di f f
end for
Lsim ← Lsim/(n × n)

TABLE III
SUMMARY OF THE USED DATASETS IN OUR EXPERIMENTS IS GIVEN. THE

TRAINING AND TEST DATASETS ARE GENERATED
AS EXPLAINED IN SECTION IV

(where the ninth element is set to 1). The homography-
based loss term: L H

2 is defined as follows: let [pi : (for
i = 1, 2, 3, 4, 5, 6, 7, 8), 1] be the elements of a 3 × 3 H
ground-truth homography matrix. Similarly, let [ p̂i : (for i =
1, 2, 3, 4, 5, 6, 7, 8), 1] be elements of 3×3 Ĥ , the predicted
homography matrix. Then, LH

2 = (1/8)
∑8

i=1(pi − p̂i )
2,

where LH
2 represents the homography loss based on the

L2 distance.
3) Average Corner Error: Ace is computed as the aver-

age sum of squared differences between the predicted and
ground-truth locations of the corner points. For Model B,
we use the predicted homography matrix to transform the four
corners of the infrared image onto the coordinate system of
the RGB image, and together with ground-truth locations we
compute LAce. Let ei be a corner at the (xi , yi ) coordinates on
the infrared image and let e′i be its warped equivalent on the
RGB coordinate space such that e′i = W (ei , P) where W is
the warping function

LAce=
1
4

4∑
i=1

D
(
ei , e′i

)2
=

1
4

4∑
i=1

(
W (ei , P)−W

(
ei , P̂

))2
(7)

where D is defined as D(ei , e′i ) = W (ei , P)−W (ei , P̂), and
where P and P̂ are ground truth and predicted vectorized
homography matrices, respectively. The total loss for ModelB,
then, is computed as L = LH

2 + γLAce, where γ is weight
factor (a hyperparameter).

In ModelB, we predict the x and y locations of the four
corner points, instead of computing the homography matrix.
This makes it possible for the network to learn to predict exact
locations (landmarks) instead of focusing on one solution. As
shown in our experiments (see Fig. 4 for qualitative and Fig. 5
for quantitative results), Model A converges faster and yields
better results while minimizing outliers. We use a slightly
modified version of LAce for Model A such that êi becomes

the ground-truth corner coordinate in RGB coordinate space.
For Model A, LAce is defined as follows:

LAce =
1
4

4∑
i=1

(
ei − êi

)2
. (8)

In addition to these loss functions, we also used additional
loss functions in the MMFEB block during our ablation study.
Those functions are LMAE and LSSIM. They are briefly defined
below

LMAE =
1

x ∗ y

n∑
x=0

n∑
y=0

∣∣ f ′RGB(x, y)− fIR(x, y)
∣∣ (9)

LSSIM = 1− SSIM
(

f ′RGB(x, y), fIR(x, y) (10)

where SSIM is used as also used and defined in [43].

IV. EXPERIMENTS

In this section, we describe our experimental procedures,
used datasets, and our metrics. Below we describe our used
datasets.

A. Datasets

In our experiments, we use Skydata1 containing RGB and
IR image pairs, MSCOCO [31], Google-Maps, and Google-
Earth (as taken from DLKFM [52]), VEDAI [48] datasets.
Refer to Table III for more details about the used datasets in
our experiments. SkyData is originally a video-based dataset
that provides each frame of the videos in image format.

B. Generating the Training and Test Sets

To train the algorithms, we need unregistered and registered
(ground truth) image pairs. For SkyData, we randomly select
m frame pairs for each video sequence.

For each dataset that we use, we generate the training and
test sets as follows.

1) Select a registered image pair at higher resolutions.
2) Sample (crop) regions around the center of the image to

get smaller patches of 192 × 192 pixels. This process
is done in parallel for visible and infrared images.

3) If the extracted patches are not sufficiently aligned,
manually align them.

4) For each pair, select a subset of the IR image, by ran-
domly selecting four distinct locations on the image.

5) Find perspective transformation parameters that map
those randomly chosen points to the following fixed
locations: (0,0), (n−1,0), (n−1, n−1), (0,n−1) so that
they can correspond to the corners of the unregistered
IR image patch, where we assume that the unregistered
IIR is n × n dimensional (in our experiments n is set to
128). This process creates an unregistered infrared patch
(from the already registered ground truth) that needs to
be placed back to its true position.

6) Use those four initially selected points as the
ground-truth corners for the registered image.

1www.skydatachallenge.com

Authorized licensed use limited to: Ozyegin Universitesi. Downloaded on November 18,2024 at 11:06:57 UTC from IEEE Xplore.  Restrictions apply. 



ÖZER AND NDIGANDE: VisIRNet: DEEP IMAGE ALIGNMENT FOR UAV-TAKEN VISIBLE AND INFRARED IMAGE PAIRS 5403111

Fig. 4. Qualitative results on sample image pairs taken from different datasets. The first two columns show the input image pairs for the algorithms. The
target image is 192 × 192 pixels and the source image is 128 × 128 pixels (which covers a scene that is a subset of the target image). The third column shows
the ground-truth version (192 × 192 pixels) of the source image on the coordinate system of the target image after being warped. The fourth column shows
the ground truth (warped) where the source image is overlayed on the target image (192 × 192 pixels). The remaining six columns show the overlayed results
(192 × 192 pixels), after applying for registration with the algorithms in the order of SIFT, DHN, MHN, CLKN, DLKFM, and our approach, respectively.
Visually, each algorithm’s result can be compared to the image in the fourth column.

Fig. 5. ACE distribution versus count of image pairs for different models is
shown on the test set of Skydata.

7) Repeat process k times to create k different image pairs.
This newly created dataset is then split into training and
test sets.

8) The RGB images are used as the target set and the
transformed infrared patches are used as the source set
(for both training and testing).

This process is done on randomly selected registered pairs for
each dataset. Fig. 6 also illustrates this process on a pair of
RGB and IR images. The list of all the used datasets and their
details are summarized in Table III.

C. Evaluation Metrics

As shown in Table IV, we quantitatively evaluate the
performance of our models using Ace and homography error.

Fig. 6. How to select initial corner points on the registered image pairs and
how to generate the training data. First, a random image patch is taken from
the originally registered IR image. Then, the random corners of that patch
are transformed into fixed coordinates and after that, the H matrix (and its
inverse) performing that transformation is computed.

We compute each algorithm’s result distribution in terms of
quantiles, mean, standard deviation, and min-max values for
a given test set. Quartiles are a set of descriptive statistics
that summarize central tendency and variability of data [49].
Quartiles are a specific type of quantiles that divide the data
into four equal parts. The three quartiles are denoted as Q1, Q2
(which is also known as the median), and Q3. The 25% (Q1),
50% (Q2), and 75% (Q3) percentiles indicate that k% of the
data falls below the kth quartile (the bottom right illustration
in Fig. 7 also illustrates these terms). To find quartiles, we first
sort elements in the data being analyzed in ascending order.
The first quartile is the number of samples that fall below
the dataset size*(1/4) element. Likewise, the second quartile
is the count of elements that fall below dataset size * (2/4)
and the third quartile is dataset size * (3/4)th element in
the sorted dataset. The samples that fall out of (Q1−1.5 *
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TABLE IV
COMPARATIVE RESULTS OF ALGORITHMS ON EACH DATASET IN TERMS

OF ACE. BEST RESULTS ARE SHOWN IN BOLD. THE RESULTS
ILLUSTRATE THAT AVERAGE TRADITIONAL SIFT PERFORMED ON

AVERAGE IN DATASETS OF SINGLE OR CLOSE MODALITIES. IN CASES
WHERE ENOUGH PAIRS WERE NOT FOUND SIFT IS UNABLE TO

ESTIMATE HOMOGRAPHY MATRIX. WE ASSIGN A CONSTANT
10000.0 AS THE ERROR. LEARNING-BASED ALGORITHMS

DHN AND MHN DIRECTLY PREDICT HOMOGRAPHY
MATRIX WITHOUT LEARNING COMMON REPRESENTA-

TION ALSO SUFFERS ESPECIALLY ON DATASETS
SUCH AS SKYDATA AND GOOGLE MAPS. THIS IS DUE

TO THE MODELS BEING UNABLE TO CREATE MEANINGFUL
CORRESPONDENCES FOR INPUT AND TARGET IMAGES AS A

RESULT OF THE MODALITY DIFFERENCE LEVEL. NOTE
THAT OUR APPROACH HAS A SMALL STANDARD DEVIATION
AS OPPOSED TO LK-BASED APPROACHES. LK TECHNIQUES

OFTEN SIGNIFICANTLY DEVIATE FROM THE SOLUTION
DEPENDING ON NUMBER OF ITERATIONS THEY ARE RUN

AND INITIAL PARAMETERS THEY RECEIVE.

IQR and Q3+1.5IQR) where IQR is interquartile range, are
considered outliers. The box plot as in Fig. 7 illustrates the
above-mentioned description visually.

Table V shows an ablation study on using different loss
functions in each block in our architecture. The used metric
in the table is Ace and the best values are shown in bold. The

TABLE V
ABLATION STUDY ON USING DIFFERENT COMBINATIONS OF LOSS

FUNCTIONS ON TWO DIFFERENT DATASETS. THE LOSS FUNCTIONS
SHOWN IN EACH ROW ARE USED FOR THE MMFEB BLOCK, AND
THE LOSS FUNCTIONS SHOWN IN EACH COLUMN (LACE AND L H

2 )
ARE USED FOR THE REGRESSION BLOCK IN OUR MODEL. BEST
RESULTS ARE SHOWN IN BOLD. ACE IS THE METRIC USED TO

COMPUTE THE RESULTS FOR EACH LOSS FUNCTION
COMBINATION. THE LAST COLUMN SHOWS THE

AVERAGE ACE VALUE FOR EACH LOSS FUNCTION
USED IN THE MMFEB BLOCK. ON AVERAGE,

LSIM YIELDED THE BEST RESULTS

Fig. 7. Each plot shows the ACE for the algorithms including MHN, DHN,
DLKFM, CLKN, SIFT, and ours for a different dataset. The legends used in
the plots are also given in the lower right corner of the figure.

loss functions in each row are used to train the MMFEB block
including Lsim, LMAE, and LSSIM. The loss functions used for
the regression block are LAce and L H

2 . In the table, the last
column shows the average error for both LAce and L H

2 (over
two datasets including SkyData and VEDAI) for each of the
used loss functions in the MMFEB block.

Next, we provide experimental results on the effect of
the hyperparameters that we studied for both Model A and
Model B. Table VI summarizes those results. In particular,
we studied the effect of using different loss functions (L1,
L2, and LAce) and using different batch sizes for both models.
All the experiments were done on the SkyDataset. The best
results are shown in bold. Overall, Model B showed promising
results achieving better results when compared to Model A.
Therefore, for the rest of our experiments, we kept using
Model B only.
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TABLE VI
COMPARISON OF THE RESULTS OF MODEL A AND MODEL B AT VARIOUS
HYPERPARAMETERS INCLUDING BATCH SIZES AND LOSS FUNCTIONS.
THE TOP TABLE SHOWS THE HOMOGRAPHY ERROR IN (A), WHILE THE
BOTTOM TABLE SHOWS THE RESULTS AS ACE IN (B). NOTE THAT THE

RESULTS ILLUSTRATING LOW HOMOGRAPHY ERROR DOES NOT
NECESSARILY IMPLY SMALL REGISTRATION ERROR. WE STUDY
THE EFFECT OF BACTH SIZES AND LOSS FUNCTIONS. DIRECTLY

PREDICTING HOMOGRAPHY MATRIX WORK BUT IT DOES
NOT MINIMIZE THE REGISTRATION ERROR AS PREDICTING
DIRECT CORNERS IN OUR EXPERIMENTS. THESE RESULTS

ARE OBTAINED ON SKYDATA DATASET

Fig. 7 uses a box plot, also known as a box-and-whisker
plot, to display the distribution of ACE for different datasets
and different models. It provides a summary of key statistical
measures such as the minimum, first quartile (Q1), median
(Q2), third quartile (Q3), and maximum. The length of the
box indicates the spread of the middle 50% of the data. The
line inside the box represents the median (Q2). The whiskers
extend from the box and represent the variability of the data
beyond the quartiles, in our case, they represent Q1−1.5∗IQR
and Q3 + 1.5 ∗ IQR. Individual data points that lie outside
the whiskers are considered outliers and are plotted with
diamonds. The figure compares the results for six algorithms
on five different datasets.

Fig. 5 shows the performance of six methods (SIFT, DHN,
MHN, CLKN, DLKFM, and Ours) on the SkyDataV1 dataset,
in terms of ACE. Skydata has RGB and infrared image pairs.
In this figure, we aim to show that feature-based registration
techniques such as SIFT perform poorly, whereas methods
that leverage neural networks and learn representations are
superior.

Fig. 4 gives detailed qualitative results of our experi-
ments. Each row represents a sample taken from a different
dataset. The columns represent inputs and results for different
approaches. Target is (192 × 192) (first column) and source

(second column) (128 × 128) are input image pairs. Warped
(third column) is the ground-truth projection of the source
to the coordinate system of the target image and Registered
(fourth column) is the warped image overlayed on the target
image as shown. Columns 5–10 show the registered and
overlayed results for SIFT, DHN, MHN, CLKN, DLKFM,
and Ours (Model A) for the given input pair. While almost
all algorithms relatively well on Google Earth pair (which
provides similar modalities for both target and source images),
when the modalities are significantly different, as in the
SkyData, Google Maps, and VEDAI pairs, the figure shows
that SIFT, CLKN, MHN, DHN, and DLKFM algorithms can
struggle for aligning them and they may not converge to
any useful result near the ground truth (see SIFT and CLKN
results), while our approach converges to the ground truth by
yielding small ACE error for each of those sample pairs.

Table IV illustrates the results of using different approaches
for each dataset, separately. In Table IV(e), the MSCOCO
results being a single modality dataset, SIFT performs rela-
tively better but there are cases where the algorithm could
not find homography due to insufficient pairs. Google earth
in (c) also has RGB image pairs but from different seasons.
The SIFT algorithm is still able to pick enough salient features,
therefore, the performance is still reasonable. (d) Google
maps, (a) SkyData and (b) VEDAI have pairs of significant
modality difference. Deep-learning-based approaches were
able to perform registration often with a high number of
outliers. Our approach was able to perform registration on
both single and multimodal image pairs, specifically, we were
able to keep the max error minimum as opposed to LK-based
approaches.

V. CONCLUSION AND DISCUSSION

In this article, we introduce a novel image alignment
algorithm that we call VisIRNet. VisIRNet has two branches
and does not have any stage to compute keypoints. Our exper-
imental results show that our proposed algorithm performs
state-of-the-art results when it is compared to the LK-based
deep approaches.

Our method’s main advantages can be listed as follows.
1) Number of iterations during inference: The above-

mentioned LK-based methods (after the training stage), also
iterate a number of times during the inference stage, and at
each iteration, they try to minimize the loss. However, those
methods are not guaranteed to converge to the optimal solution
and often number of iterations, chosen as a hyperparame-
ter, is an arbitrary number during the inference stage. Such
iterative approaches introduce uncertainty for the processing
time, as convergence can happen after the first iteration in
some situations and after the last iteration in other situations
during inference. Such uncertainty also affects the real-time
processing of images, as they can introduce varying frame-per-
second values. Our method uses a single pass during inference
to make it more applicable to real-time applications.

2) Dependence on the initial H estimate: In addition to the
above-mentioned difference, the LK-based algorithms require
an initial estimate of the homography matrix and the perfor-
mance (and number of iterations required for convergence)
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directly depend on the initial estimate of H and, therefore,
it is typically given as input (hyperparameter). While we also
have initialization of the weights in our architecture, we do
not need an initial estimate of the homography matrix within
the architecture as input.

Image alignment on image pairs taken by different onboard
cameras on UAVs is a challenging and important topic for
various applications. When the images to be aligned are
acquired by different modalities, the classic approaches, such
as SIFT and RANSAC combination, can yield insufficient
results. Deep-learning techniques can be more reliable in such
situations as our results demonstrate. LK-based deep tech-
niques have recently shown promise, however, we demonstrate
with our approach (VisIRNet) that without designing any
LK-based block, and by focusing only on the four corner
points, we can sufficiently train deep architectures for image
alignment.
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